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SUMMARY 
An unstructured finite element method is presented for calculation of turbulent flow fields about aerospace 
configurations. Algebraic, one-equation, and two-equation turbulence models are implemented and com- 
pared. A new procedure for implementing an unstructured algebraic model without an auxiliary structured 
grid is presented. The overall procedure is applied to simulation of flow about launch vehicle configurations. 
The turbulence models are evaluated for calculation of flow fields about a forebody with shock induced 
separation. For this case, the one-equation model gives better predictions. An inviscid flow field about 
a complete launch vehicle with multiple boosters is also evaluated to demonstrate the overall procedure. 
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INTRODUCTION 

Solution-adaptive unstructured grid technology is a promising approach offering geometric 
flexibility for the handling of both complex geometry and flow fields. As such, it can provide 
a capability to accurately compute complex flow fields about aerospace configurations. Several 
procedures for calculating inviscid flow fields have been developed and successfully applied to 
complex configurations. For calculating three-dimensional viscous flow fields, considerably less 
work has been published using unstructured grids, examples of which are presented in References 
1 4 .  Based on the successful inviscid flow results and the promising but limited results for viscous 
flow, there is a need for considerably more research into applying unstructured technology to 
viscous flow fields. 

The long-term objective of this work is to develop a computational procedure to predict 
viscous flow fields about aerospace configurations using unstructured grid technology. For the 
present work, the objectives are to implement and evaluate various turbulence models and apply 
the current procedure to simulation of flow about launch vehicle configurations. 
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GOVERNING EQUATIONS 

The Reynolds-averaged Navier-Stokes equations for time-dependent, three-dimensional, com- 
pressible flow of a simple system in thermodynamic equilibrium in the absence of body forces can 
be expressed in conservation form as 

au aFi aci -+---=o, i =  1 ,2 ,3  
at ax' ax' 

where U is the solution vector, F' is the advective flux vector in the i-direction, and G' is the 
diffusive flux vector in the i-direction. The solution, inviscid flux, and viscous flux vectors are 
given by 

U =  

where p is the density, V' is the velocity component in the i-direction, E is the total energy, P i s  the 
static pressure, qi is the heat flux component in the i-direction, zij is the viscous stress i, j 
component. The heat flux and viscous stress components are given by 

where T is the temperature, k ,  is the effective coefficient of thermal conductivity, and p e  is the 
effective coefficient of viscosity. The effective coefficients are obtained from the sum of the 
molecular and turbulent coefficients. For the molecular coefficient of viscosity, Sutherland's 
formula is used. The turbulent coefficient of viscosity is obtained from one of the turbulence 
models described in the next section. For the coefficients of thermal conductivity, the Prandtl 
numbers are used. 

In the present work a thermally and calorically perfect gas is assumed and the equations of 
state for pressure and temperature are obtained from perfect gas relationships. Other thermodyn- 
amic models for real gas effects, including chemical reactions, have been incorporated. The 
long-term scope of the present effort includes simulation of plumes, which may require use of 
these models. 

TURBULENCE MODELS 

For flow fields about many aerospace configurations, an inviscid or laminar flow assumption is 
not valid. Consequently, a turbulence model must be incorporated to account for the effects of 
turbulence. For configurations with limited flow separation, an algebraic Baldwin-Lomax model 
has been implemented. With flow separation and/or complicated detached viscous regions, a field 
equation model is more appropriate. The one-equation Baldwin-Barth and two-equation (k-6) 

Launder-Sharma models have both been implemented. 
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Algebraic model 

An unstructured version of the algebraic turbulence model of Baldwin and Lomax’ has been 
implemented. Rostrand6 and Mavriplis7 have incorporated this model into unstructured flow 
solvers using an auxiliary structured grid. In this approach, the flow properties are interpolated 
from the unstructured grid to the locally structured grid. The turbulent coefficient of viscosity is 
determined from the algebraic model using the structured grid data and then interpolated back to 
the unstructured grid. Pan and Cheng’ have also incorporated the algebraic model of Baldwin 
and Barth in a two-dimensional unstructured flow solver. In their approach, an auxiliary grid is 
used only to sort the unstructured grid into strips for determining the local length scales. No 
interpolation is required between grids. For the current implementation, a new approach has 
been used, wherein existing nodes in the unstructured grid are linked together to form a network 
of lines emanating from solid boundaries. With this approach, no interpolation between grids is 
required, only the connectivity of the auxiliary grid is needed, and the auxiliary grid is a subset of 
the full grid. Unstructured algebraic turbulence model grid lines for a regular and irregular 
unstructured grid are illustrated in Figure 1. This approach is most amenable to unstructured 
grids which are generally regular as should be the case within the boundary layer region of 
a quality unstructured grid. It is reasonable to anticipate that even for complex configurations or 
solution-adapted grids an unstructured grid can be generated in the viscous region which is at 
least locally regular. The irregularity of the grid lines can be minimized to some extent by setting 
the local length scales to the distance from the boundary in a direction normal to the surface 
rather than the distance along the edge. Even with a fully irregular grid, the results are 
comparable to those for a regular grid. In comparison to an auxiliary grid scheme, the present 
approach can be viewed as similar, with no interpolation in the direction normal to the boundary 
and zeroth-order interpolation in the tangential direction. The interpolation error is compatible 
with the flow field as the gradients normal are typically much greater than those tangential. 
Although not yet implemented, the procedure described here can be extended for wakes. In the 
wake, a suitable starting location and normal direction would be required to generate turbulence 
grid lines. Given corresponding grid lines for a wake point, the procedure presented by Mavriplis7 
could be used to determine the wake centreline and appropriate length scales. 

Two-equation turbulence model 

For flow fields with significant separation and/or detached viscous regions, a field equation 
model is more appropriate than the previously described algebraic model. A two-equation k--E 

Regular Unstructured Grid 

Figure 1. Unstructured algebraic 

Irregular Unstructured Grid 

turbulence model grid lines 
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turbulence model9-" has been implemented. The model used in the low Reynolds number model 
of Launder and Sharma." With a k k  model the turbulent coefficient of viscosity is determined 
from the turbulence kinetic energy and dissipation rate which are obtained from coupled 
transport equations. These equations are solved in the same manner as the Navier-Stokes 
equations in the present implementation. 

Typically, a y +  value near 1 is required for reasonable accuracy. The resulting stiffness can 
affect the robustness and efficiency of the flow solver. In addition, initial conditions, boundary 
conditions, limiters, and dissipation can significantly impact robustness. The following conditions 
drastically improve the performance with the present flow solver: 

(a) Set k and E initially to values that correspond to high levels of turbulence, e.g. a turbulence 
intensity of 10 per cent and a turbulence Reynolds number of 500. This typically ensures 
that turbulence is produced. 

(b) Set k and E boundary conditions to physically realistic values that correspond to low levels 
of turbulence, e.g. a turbulence intensity of 1 per cent and a turbulence Reynolds number of 
0.1. This typically produces solutions that are independent of the far-field turbulence. 

(c) Limit k and E so that they do not go negative in value during initial transients. 
(d) Limit the maximum turbulent viscosity during initial transients and if there is poor grid 

resolution in high gradient regions. Typically, a maximum ratio of turbulent to molecular 
viscosity of 10000 is used. In severe cases (poor grid resolution and separation) a lower 
maximum may be required, e.g. 5W1000. 

(e) Add artificial dissipation predominantly in the direction of velocity (a first-order upwind 
solver can produce the equivalent). The flow field solution was found to be relatively 
insensitive to reasonable levels of streamwise dissipation added to the k--E equations. 
However, the robustness of the flow solver increased with added k--E dissipation. This 
additional dissipation is not added to the Navier-Stokes equations. 

One-equation turbulence model 

For flow fields with significant separation, the previously described models have in general 
been successful only in a limited number of cases. The one-equation model developed by Baldwin 
and Barth' has produced significantly improved results for transonic flow fields about aerofoil 
configurations with shock induced separation. This model has been implemented in the present 
procedure as an alternative to the two-equation model. With the one-equation model, the 
turbulent coefficient of viscosity is determined from a modified turbulence Reynolds number 
which is obtained from a single transport equation. This equation is solved in the same manner as 
the Navier-Stokes equations in the present implementation. 

Typically, a y + value near 2 is required for reasonable accuracy, which is an improvement over 
the k-E model. Also, in comparison with the k--E model, the one-equation model is more robust 
and less sensitive to initial conditions, boundary conditions and limiters with the present flow 
solver. As was the case for the k--E model, the solution was found to be relatively insensitive to 
reasonable levels of streamwise dissipation. However, for this model, streamwise dissipation was 
found to be essential for non-oscillatory solutions. Again, this additional dissipation is not added 
to the Navier-Stokes equations. 

In the present implementation, the anti-diffusive term is not limited for positivity, as was done 
in the original implementation." Streamwise dissipation was found to be sufficient for relatively 
coarse grids (yet fine enough for reasonable accuracy) where the turbulent coefficient of viscosity 
at adjacent nodes varied in some regions by a factor of three or more. Limiting alone was also 
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found to be sufficient for smooth solutions. However, even partial limiting significantly degraded 
the solution and increased the resulting skin friction. Streamwise dissipation did not degrade the 
solution. 

SOLUTION PROCEDURE 

The governing equations are discretized in space using a Galerkin weighted residual approxima- 
tion with the solution domain divided into tetrahedral finite elements. The discretization is vertex 
based and the solution vector is stored and solved for at the element vertices or nodes. Time 
discretization is obtained using either an explicit multistep Runge-Kutta scheme or an explicit 
two-step Lax-Wendroff scheme. The Runge-Kutta scheme is based on the procedures developed 
in References 2,13 and 14, and the Lax-Wendroff scheme is based on the procedures developed in 
References 2, 15 and 16. For the present work, only the Lax-Wendroff scheme has been used. 
Boundary conditions are implemented using a method of characteristics procedure described in 
Reference 2. 

Finite element discretization 

For the governing equations, the Galerkin weighted residual statement is given by 1 I / / - + - - -  [a0 aP a C i ]  d R = O  
at ax' ax1 (3) 

where I// is the test function, R is the domain and A denotes approximated values obtained using 
a finite element shape function, 4. At each node in the domain, the weighted residual statement 
can be integrated directly using a piecewise linear test function. For the time derivative, 
a piecewise linear shape function is used and the resultant mass matrix is lumped for steady flow 
calculations. A piecewise linear shape function is used to evaluate the viscous flux vector at time 
level n. The inviscid flux vector is evaluated at time level n + 4 with a piecewise constant shape 
function. The integrated result for equation (3), using the Gauss divergence theorem, can be 
expressed for node k as 

where j denotes an element node, j e  denotes an element, jeb denotes a boundary element, nb 
denotes the element node opposite a boundary face, R denotes the element volume, M is the mass 
matrix, and At is the time step. The boundary term in equation (4) contributes only if node k is on 
a boundary. The linear shape function partial derivative is given by 

where rfe is the area component in the i-direction for the element surface opposite node j of 
element je.  The solution vector for the inviscid flux vector at time level n + f is obtained by 
integrating equation (3) without the viscous term and with a piecewise constant test function and 
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linear shape function. The result is 

where Atje is the element time step. The viscous flux vector is evaluated directly from the solution 
vector at the nodes. For example, the heat flux component is given bv 

(7) 

The other components of the viscous flux vector are obtained in a similar manner. The time step 
in equations (4) and (6) is set to the local maximum permissible time step for steady flow 
calculations. 

Local structured edge connectivity 

Many finite element and finite volume flow solvers can be implemented using either an edge, 
element or face based data structure. For example, the equivalent of equation (4) for the 
Runge-Kutta solver can be expressed in edge based form. The edge based data structure can offer 
memory and speed advantages. It can also be used to exploit local structure in the grid. An edge 
based data structure that utilizes a local structured edge connectivity has been developed.' 
Neighbouring edges and their connectivity for this data structure are shown in Figure 2 for 
a two-dimensional unstructured grid. For an edge given by points 1 and 2, two closely aligned 
neighbouring edges given by points 0 and 1 and points 2 and 3 are selected. Points 0,1,2 and 3 are 
analogous to locations i - 1, i, i + 1 and i + 2 in a structured grid. Ideally, the connected edges 
should form a very smooth line. For a typical grid, however, with varying element volumes, there 
will be some connected edges which do not form a smooth line. Based on results obtained with 
such connections, this does not create any numerical problems. The local structured edge 
connectivity allows direct and efficient implementation of many upwind high-resolution struc- 
tured schemes. In the present work, a structured flux-limited dissipation model is implemented 
using this connectivity. 

Unstructured 
Smooth Alignment 

Unstructured 
Irregular Alignment 

Figure 2. Local structured edge connectivity 
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Art@cial dissipation 

In regions containing severe gradients, e.g. near shock waves and stagnation points, artificial 
dissipation is required to filter out oscillations. Also, appropriately scaled background dissipation 
for the turbulence unknowns is beneficial with the field equation turbulence models previously 
described. For the Lax-Wendroff solver used in the present work, an adaptive second-order 
dissipation model is used. The second-order dissipation model is given by 

Dk = 1 max(cl,c2G) S(U2  - Ul)  
edge 

where Dk is the dissipation term for node k which is added to the right-hand side of equation (4), 
U ,  and U 2  are the solution vectors at  locations 1 and 2 in Figure 2, c1 is the background constant, 
c2 is the gradient switch constant, G is the gradient switch and S is the directional scaling factor. 
Typically, the background constant is set to zero, turning off the background dissipation. 
Howevet, for the turbulence transport equations a value of 0.5 is typically used. This provides 
levels of dissipation near or above that of a first-order upwind scheme. The gradient switch is 
given by 

(9) I1 G = max 

where p is typically the pressure. The gradient switch is also normalized so that it varies between 
0 and 1. The directional scaling factor is obtained using edge average variables and is given by 

S = v i P  + alr'l (10) 
where a is the speed of sound, V' is the velocity vector, and r' is the edge area vector. The scaling 
factor can be modified to provide dissipation primarily in the direction of velocity as given by 

The modified scaling factor is always used for the turbulence transport equations. 
For high Mach number flow fields, a limiting modification provides improved resolution. This 

model is an unstructured implementation of the flux-limited model developed by Jameson'* and 
enhanced by Yoon and Kwak." Using the local structured edge connectivity, this model can be 
obtained by modifying the gradient switch constant as given by 

Computer implementation 

The numerical procedures described above have been implemented in a computer code which 
has been installed and executed on a wide variety of computers. On vector computers the code is 
completely vectorized with the exception of some setup and output routines. Memory require- 
ments vary between 100 and 200 words per node depending on options selected and maximum 
vector length used for work arrays and colouring. On the CRAY C90 at NASA Ames Research 
Center the code requires 9, 18,24 and 28 x 10-,6 CPU seconds per iteration per point for inviscid, 
viscous with algebraic model, viscous with one-equation model, and viscous with two-equation 
model respectively. The memory and CPU requirements given are for three-dimensional cases. 
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GRID GENERATION 

The three dimensional unstructured tetrahedral grids used in the present work were obtained 
from a Delaunay based grid generator developed by Weatherill. ‘’9 2o This generator uses the 
Delaunay triangulation criterion with automatic point insertion. A grid of 1 million elements can 
be generated in 1&30 min on commonly used workstations.” These times are for the complete 
generation process, from surface definition to final grid in a form such that it can be used directly 
by the flow solver. 

At present our grid generation capability for viscous flow fields is limited. A semi-structured 
approach has been taken wherein the surface grid is displaced and a semi-structured boundary 
layer grid is inserted. The boundary-layer grid is generated by stacking the unstructured surface 
grid to form the field grid. The initial capability was developed by Halt.” While this approach 
has limited geometric flexibility, it is suitable for many launch vehicle configurations and can be 
used with unstructured solution adaptation. With further development, this approach should 
provide a capability adequate for most launch vehicles. 

RESULTS 

The procedures described above have been successfully applied to a wide variety of aerospace 
applications.2* 17,20 Se veral flow fields have been computed for this investigation to verify and 
compare the accuracy of the turbulence models and demonstrate the present capability for launch 
vehicle configurations. 

Turbulent f low over a f la t  plate 

A detailed study has been completed for laminar and turbulent flow over a flat plate to verify 
the accuracy of the computed results for simple viscous flow fields. Very accurate solutions can be 
obtained with the unstructured solver using a grid with moderate density. For laminar flow, the 
Blassius solution can be accurately predicted using the unstructured equivalent of a 21 x 21 
structured grid.’ The unstructured solver has also been compared directly with a fully structured 
solver. The results for a regularly connected grid are very similar to those of the structured solver. 

For turbulent flow, various grid types, as illustrated in Figure 3, have been evaluated. In 
general, the accuracy is very similar for each grid type. However, the transformed, irregular grid 

Regularly Distributed, Regularly Connected Regularly Distributed, Randomly Connected 

Regular-Staggered Distribution, Regularly Connected Transformed, Irregular 

Figure 3. Grids for flat plate flow (y-co-ordinate expanded 10 x for clarity) 
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Figure 4. Skin friction distributions for turbulent flat plate flow at M ,  = 0.5 

did produce local imperfections which diminish as the grid density is increased. With the 
randomly connected and the staggered grids, the convergence rate was slightly degraded in 
comparison to the regularly connected grid. The convergence rate for the transformed, irregular 
grid was significantly degraded. 

Distributions of the skin friction coefficient computed with the algebraic, one-equation, and 
two-equation turbulence models are shown in Figure 4. The results for each model are in excellent 
agreement with each other and the White-Christoph formula.22 For the algebraic and one- 
equation model the nodes adjacent to the flat plate are at a y +  of - 2 and for the two-equation 
model they are at a y +  of - 1.  A regularly connected grid with 441 nodes (equivalent to a 21 x 21 
structured grid) was used for each model. Finer grids and lower y +  values were also evaluated and 
no significant differences in the results were found. Higher y +  values degraded the accuracy of the 
solutions. 

Boundary layer profiles for the three turbulence models at the midpoint of the plate are shown 
in Figure 5. Again, all three models are in excellent agreement. However, the two-equation model 
required finer resolution to obtain the same profile as the other models. 

Boundary layer profiles, for the algebraic turbulence model, which is grid type dependent in the 
present implementation, are shown in Figure 6. The profile for the irregular, transfcxmed grid is in 
good agreement with the profile for the regularly distributed and connected grid. The irregular, 
transformed grid represents a worst-case scenario for the grid type dependency of the present 
algebraic model implementation. 

Launch vehicle forebody 

A launch vehicle forebody was also studied to compare the computed results with experimental 
data for a flow field with shock induced separation. The geometry is a simple spherically capped, 
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Figure 5. Boundary layer profiles for turbulent flat plate flow 
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Figure 6. Boundary layer profiles for algebraic turbulence model with different grid types 
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tangent-cone, cylinder forebody. For a free-stream Mach number of 0.8-0.9, there is a shock 
induced separation bubble located downstream of the cone-cylinder junction. The surface grid 
used for this case is illustrated in Figure 7. 

Surface pressure coefficient distributions are shown in Figure 8 for experimental data23 and 
computed solutions obtained with Euler and Navier-Stokes (with all three turbulence models). 
As expected the inviscid results compare poorly. The viscous results compare considerably better 
with the experimental data. Each of the turbulence models predicts separation. While the overall 
comparison is good, only the one-equation model accurately predicts the extent of the separation 
bubble. For validation, all of the results were obtained assuming three-dimensional flow. 

This case was also computed by Deese et ~ 2 1 . ~ ~  with an axisymmetric structured solver. Those 
results were obtained with similar algebraic and k k  turbulence models. Pressure coefficient 
distributions for the structured and unstructured solutions are shown in Figure 9. The unstruc- 
tured results compare slightly better to the experimental data in the shock/separation region and 
the structured results compare slightly better in the nose region. As the structured results were 
obtained with a much finer grid (12000 nodes on the symmetry half-plane versus 2102 nodes), 
their somewhat better prediction is expected. A finer grid for the unstructured grid should 
improve the overall prediction. However, based on the structured grid results, it is doubtful that 
the prediction of the separation region would improve. 

This configuration was also evaluated for a fully three-dimensional case at an angle of attack of 
4" with the one-equation model. Pressure coefficient distributions are shown in Figure 10. The 
overall comparison with experimental data is good. 

Figure 7. Surface grid for launch vehicle forebody (48 236 nodes and 277 932 elements in complete field grid) 
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Figure 8. Surface pressure coefficient distributions for launch vehicle at M ,  = 0.84, a = 0" and Re = 4 x 106/ft 
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Figure 9. Surface pressure coefficient distributions for structured and unstructured solutions 

Launch vehicle with multiple boosters 

Inviscid flow about a generic launch vehicle with three additional boosters was computed to 
demonstrate and evaluate the flow solver for a more realistic configuration. The surface grid for 
this configuration is illustrated in Figure 1 1 .  The National Grid Project (NGP) system25 was used 
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Figure 10. Surface pressure coefficient distributions for launch vehicle at M ,  = 0.8, CL = 4" and Re = 4 x 106/ft 

Figure 11. Surface grid for complete launch vehicle (48 993 nodes and 286 059 elements) 
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Figure 12. Logarithmic pressure contours for complete launch vehicle at A4 I, = 2.2 and a = 0.5" 

to define the geometry and generate both the surface and field grid. The rocket motors are each 
modelled power-on. At the motor exits, the ratio of pressure to far-field pressure is 40-50: 1. The 
area ratio is 10: 1 for the main motor and 8:  1 for each booster. Logarithmic contours of the 
pressure are shown in Figure 12. The overall complexity of the flow field is clearly evident. 
Accurate predictions for this case would require viscous modelling. However, the basic features of 
the flow field are all present in the inviscid solution. 

SUMMARY AND CONCLUSIONS 

An unstructured finite element procedure for calculating turbulent flow fields about aerospace 
configurations has been presented. Algebraic, one-equation, and two-equation turbulence models 
have been implemented and compared. For flow about a forebody with shock induced separ- 
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ation, the one-equation model gives better results. Further investigation is required to validate 
the one-equation model for flow about more complex vehicles. Future work will focus on 
implementing a more efficient implicit flow solver, further development of semi-structured grid 
generation methods, and continued investigation of turbulence models. 
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